

Advantages of High Molecular Weight PVDF Binder in Lithium Ion Cells

Ramin Amin-Sanayei, Ph.D. Principal Scientist

Arkema Inc.

King of Prussia, PA

Rosemary Heinze

Market Manager

Arkema Inc.

Philadelphia, PA

2009 NASA Aerospace Battery Workshop Huntsville, AL

November 17-19, 2009

Introduction

- Polyvinylidene fluoride (PVDF) polymers are widely used as binders in lithium ion batteries.
- Certain grades of PVDF are synthesized especially for binder use.
- The polymerization process and the molecular weight make a difference in binder processing and performance.

Key Attributes of Battery Binder

Chemical nature of binder

Processing aspects

Good adhesion to metallic collectors

No peel-off No cracking Good *solubility* in industrial solvents

Good cohesion between active material particles

GOOD ELECTRODE Good *homogeneity* of slurries at RT

Good initial capacity Good cycling behavior

Electrochemical properties

Experimental

materials

PVDF materials used in this work						
Code	Polymerization Process	*Solution Viscosity (cp)	Remark			
A	Emulsion Polymerization	501	Arkema Commercial Product			
В	Emulsion Polymerization	1081	Arkema Developmental Grade			
С	Suspension Polymerization	390	Commercial Product			

^{*}Solution viscosity refers to the one of 5 wt% solution in NMP, measured at 25°C using a Brookfield viscometer

Emulsion vs Suspension PVDF

- Inherent Advantages of Emulsion Grades
 - Dissolves Easier and Faster in Solvent
 - Due to Nanometer-scale Particle size Versus Micron-scale Particle Size
 - Very Mono-dispersed Particle Size Distribution
 - Provides better control during dissolution process
 - Super High Molecular Weight PVDF Can Be Synthesized

Experimental

Slurry Formulations

Slurry formulations of LFP cathode						
Electrode ID	PVDF Type	Weight Percent				
		PVDF	Total Solids	NMP		
PE# 1	А	5.0%	49.5%	50.5%		
PE# 2	В	5.0%	48%	52%		
PE# 3	С	5.0%	49.5%	50.5%		

The NMP concentration was adjusted to give a viscosity value compatible with a good coating.

Experimental

electrodes

- Cathode specimens were evaluated for peel strength using an Instron Tensiometer
- Electrodes were used to fabricate 18650 cells using a standard anode and electrolyte

Results

peel strength

Peel Strength of LFP electrodes

5% binder loading

Results

cell performance

Conclusion

- The peel strength of the cathode was profoundly affected by the MW of the PVDF
- Emulsion-polymerized grades can provide higher peel strength at the same loading as suspension-polymerized grades
- The cell capacity can be significantly improved by using PVDF homopolymer of super high molecular weight

Appendix

- Contact information
- Solvents for Kynar® PVDF resins
- Solution viscosity chart

Contact Us

Rosemary Heinze, Market Manager. rosemary.heinze@arkema.com. 1.800.KYNAR50.

Ramin Amin-Sanayei, Principal Scientist. ramin-sanayei@arkema.com.

Global office listing at www.kynar.com.

Kynar® is a registered trademark of Arkema Inc.

Solvents for Kynar® resins

Active Solvents

- Dimethyl Formamide (DMF)
- Dimethyl Acetamide (DMAc)
- Tetramethyl Urea
- Dimethyl Sulfoxide (DMSO)
- Triethyl Phosphate (TEP)
- N-Methyl-2-Pyrrolidone (NMP)

Latent Solvents

- Acetone
- THF
- MEK
- MIBK
- Glycol Ethers
- n-Butyl Acetate
- Cyclohexanone
- Isophorone
- DMC, DEC, PC

Solution Viscosity improvement of Kynar® PVDF

